SOLUTION OF THE PROBLEM OF THE GENERAL
CASE OF TWO-DIMENSIONAL GRANULE (BODY *)
MOTION IN A GRAVITY FIELD
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Analytical dependences governing the motion parameters are obtained for the two-dimensional
problem of the motion of granules ejected at an arbitrary angle to the horizon in an obliquely
directed stream with a plane velocity profile. '

The need to determine the parametérs of two-dimensional motion of bodies ejected at an angle to
the horizon originates in a number of practical cases. The motion of the ambient medium hence often
turns out to be obliquely directed.

Such a situation can hold, for instance, in the separate stages of the tower granulation process,

As is easy to determine, the soaring velocities of granules of 1~3 mm size are on the order of 6-12
m/sec, and the Reynolds numbers are hence on the order of 500-2300. It is known that the magnitude of
the frontal drag coefficient in the flow around a sphere in this Re number range can be considered constant
to sufficient accuracy. Air supplied from below into the operating towers has a 0.3-0.6 m/sec velocity
{these magnitudes reach 1.5-1.7 m/sec only in individual structures). There hence follows that the kine-
matics of air flow around granules should be determined by the air-motion velocity, since the fluctuating
air-velocity components (the averaged values) have values, in practice, which are substantially less than
the mean discharge velocity which is approximately an order of magnitude lower than the velocity of
granule motion.

In an examination of bodies falling in a gravity field, the papers [1-3] do not yield final solutions to
determine the fundamental body-motion parameters in an obliquely directed flow in a general formulation
of the problem.

Let us examine the general case of a body with a constant drag coefficient dropping in a gravity
field (turbulent flow with a laminar boundary layer). We take as the initial system of two-dimensional
motion equations
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Let us represent the system (1) in dimensionless form. To do this we introduce the following character-
istic variables by using the results from [3]:
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*Bodies with a size on the order of 1 mm and greater whose soaring velocities correspond to a turbulent
flow mode are kept in mind.
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where we = Vg/ « is the soaring velocity, a = (1/2m)o¢F;

T = Weo s w=uv+u oo W=V+U
g
Consequently, we obtain
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Here and henceforth, the upper sign will correspond to ejection of the particles at an angle oy = /2,
and the lower to —a gy > 7/2, where o is an angle measured from a downwardly directed vertical, *

The relationship
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can be obtained from the system (1a).

An exact analytical solution of the system (1b) cannot be performed successfully, However, in con-
trast to ballistics problems which require high accuracy of the solution, approximate solutions are com-
pletely acceptable in the examination of engineering questions. Such an approximate solution has been
performed in [3], for example, when the ratio WX/Wy in (1b) was considered negligible in comparison to
one. However, it turned out to be possible to carry out a broader, practically complete solution of the
question. To do this, we assume that the ratio Wy/Wy in the first equation in the system (1b) is deter-
mined by means of the second equation in which the right side is taken for the case WX/Wy « 1, This
latter assumption will reflect reality more exactly, the smaller the ratio Wx/Wy, and, conversely, the
deviation will grow as the ratio Wx/Wy increases.

On the other hand, the ratio Wy/WX which will be smaller, the greater the ratio Wx/Wy, is used in
the first equation of the system (1b).

Therefore, although its definition by the above-mentioned approximate method will result, as Wx /Wy
increases, in an increase in the discrepancy between the Wx/Wy values obtained and the real values,
nevertheless, the role of the first member under the radical in the first equation of (1b) will hence drop
rapidly. Conversely, when Wy/Wxincreases inthe latter and the role of this member grows, then Wy/Wy
drops, and the accuracy of determining this ratio also grows.

Taking the above into account, it is quite expedient to solve the system (1b) on the basis of the
assumption mentioned.

Let us express do in terms of dWy, from the second equation of the system (1b) for (WX/Wy)2 <« 1 and
by substituting this expression in the right side of (2) we obtain

*For the case o = 7/2 the spoiling of the assumption made about the constancy of the frontal drag coeffi-
cient is possible. However, it should be noted that under all technical conditions some value of the hori-
zontal velocity component is conserved at the point where the vertical velocity component drops to zero.
The total velocity can hence be reduced substantially and result in spoilage of the assumption about the
constancy of the drag coefficient in individual cases. The considerations elucidated above refer, however,
just to the domain directly adjacent to a point where the vertical component becomes zero and operate,
correspondingly, on relatively small sections of the body~motion trajectory. In sum, the influence of this
factor on the final results of the computations turns out to be insignificant.
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Solving (3), we find
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where the subscript "0" corresponds to initial conditions. Let us substitute (4) into the first equation of

the system (1b),
dw,, 21/ 1 _ 1FWpTF Wa
do W2 * Win

Taking 1/Wy as a new variable and solving (5), we obtain for oy = 7/2
4
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or, furthermore, introducing the notation

for ao > T/2,
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where 8 =arcsin[1//1 + W3],

The computation using (6b) is carried out until the time when W, = 0, When a further computation is
needed, the point corresponding to Wy = 0 is taken as the origin, and a computation is performed from it
by means of (6a) corresponding to oy = /2.

An analogous method of computations for the case o > 7/2 is taken in seeking the other particle
motion parameters by means of the relationships given below.

Substituting dX/dé = Vx = Wy ¥ Uy and integrating, we find (6 = 0 for X = 0) for oy = /2
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where the factors in front of the arctan and the In in (7) turn out to be imaginary for W, > 1.

Then taking account of the known relationship between the arctan and the ln, we obtain in the complex
domain

A= a0
for ay > /2 .
X=—Ya__1n [tg OB Vitwi+ WO)} - U0, )
Vi+wi 2
To seek Wy and Y, let us substitute the (8) and (6a) found into (2):
for ay = /2
2 —
B e T ®
for oy > n/2
Wy w,clg®+B) = 1. )

The solution of these equations will be:
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for ay = w/2
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The time when Wy becomes zero is determined from (9a),
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after which the computation should be carried out by means of the equation for oy = 7/2, as has already
been mentioned above. Seeking X, we analogously substitute

aY/de =V, =W,5 U,
and then integrate (9) and (9a). Consequently, for a, = /2 we obtain
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For W, > 1, i.e., when the initial velocity is greater than the soaring velocity

1— - W o L
Y:ln[ Yo (Krexp8 -+ exp (_e))J_ 2Wo — W) m( - K _expO- /K ):- U,p. (112)
2 F—{(1—Wp) 1K expb—i/K |
For a,> /2
, 1 1 W, W, [, 6=+p S
Y =In : e | " B0 njt : v Vi1ie-wh | U
[ sin@+B) v 1+W J V1w [g 2 Wo - FWo) = Uy (11b)

The essential difference between the velocity W, and its components in the relationships presented
above should be noted. In the latter W, is taken in absolute value, while Wy, and Wy, have signs corre-
sponding to their directions.

As a comparison with computations performed on an electronic computer by using the system (1)
shows, the dependences obtained above to determine the fundamental granule-motion parameters yield
not more than a £10% maximum error in the whole range of initial motion conditions.

NOTATION

is the abscissa;

is the ordinate (measured from the top down);
is the particle velocity;

is the velocity of the medium;

is the relative particle velocity;
is the particle mass;

is the density of the medium;

is the area of the Midelev section;
is the frontal drag coefficient;

is the time;

is the acceleration of gravity.
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